Clocks in the Rocks

Radiometric dating is a means of determining the “age” of a mineral specimen by determining the relative amounts present of certain radioactive elements. By “age” we mean the elapsed time from when the mineral specimen was formed. Radioactive elements “decay” that is, change into other elements by “half lives. The formula for the fraction remaining is one-half raised to the power given by the number of years divided by the half-life in other words raised to a power equal to the number of half-lives. If we knew the fraction of a radioactive element still remaining in a mineral, it would be a simple matter to calculate its age by the formula. To determine the fraction still remaining, we must know both the amount now present and also the amount present when the mineral was formed. Contrary to creationist claims, it is possible to make that determination, as the following will explain:. By way of background, all atoms of a given element have the same number of protons in the nucleus; however, the number of neutrons in the nucleus can vary.

FAQ – Radioactive Age-Dating

The very long half-lives of these isotopes make them particularly suitable for finding the age of rocks. For example if you consider the uranium series that the final stable isotope is lead, and if we assume that there was no lead in the rock when it was formed the ratio of the number of atoms of lead N Pb to the number of atoms of uranium N U will give us the age of the sample. The carbon 14 is then absorbed by plants; these in turn are eaten by animals which may then be eaten by other animals.

As soon as the animal dies the intake of radioactive carbon stops and the proportion in the body starts to decrease.

decay of C and U •. Students will estimate the age of various objects using radioactive dating with common radioactive isotopes, such as C in dating.

Radiometric dating – internal clocks in rocks Geochronology: the science of dating geologic materials. Radioactive decay occurs at an exponential rate, meaning that it can be described in terms of a half life. After one half live, half of the original radioactive isotope material in the system under consideration decays.

Another half life and half of the remaining material decays, and so on. This is for unforced decay. Forced decay is when the isotopic material is packed densely enough that a decay in one unstable atom sends out a particle that hits another atom and causes it to decay. If it is packed too densely there is a run away reaction and one of those unpopular mushroom clouds or meltdowns.

Normal concentrations of radioactive material on earth are well below the levels where forced decay occurs so we can use the relatively simple mathematics of exponential decay to describe the process. A major assumption is that the rock or mineral being dated has been a closed system so that no parent isotope or daughter product has escaped or been added. This assumption can be tested for. What event sets the clock, or more succinctly, when is the system closed?

Diagram focusing on some short-lived radioactive isotopes, including carbon Some of these other isotope systems are also used for dating purposes.

How Old is the Universe?

Uranium—uranium dating , method of age determination that makes use of the radioactive decay of uranium to uranium; the method can be used for dating of sediments from either a marine or a playa lake environment. Because this method is useful for the period of time from about , years to 1,, years before the present, it helps in bridging the gap between the carbon dating method and the potassium-argon dating method.

Uranium—uranium dating. Info Print Cite. Submit Feedback.

Students will use half-life properties of isotopes to determine the age of different Green = Parent isotope Uranium (30 beads), Orange = Daughter isotope.

As we learned in the previous lesson, index fossils and superposition are effective methods of determining the relative age of objects. In other words, you can use superposition to tell you that one rock layer is older than another. To accomplish this, scientists use a variety of evidence, from tree rings to the amounts of radioactive materials in a rock. In regions outside the tropics, trees grow more quickly during the warm summer months than during the cooler winter.

Each dark band represents a winter; by counting rings it is possible to find the age of the tree Figure The width of a series of growth rings can give clues to past climates and various disruptions such as forest fires. Droughts and other variations in the climate make the tree grow slower or faster than normal, which shows up in the widths of the tree rings. These tree ring variations will appear in all trees growing in a certain region, so scientists can match up the growth rings of living and dead trees.

Radioisotope Brief: Uranium

Here I want to concentrate on another source of error, namely, processes that take place within magma chambers. To me it has been a real eye opener to see all the processes that are taking place and their potential influence on radiometric dating. Radiometric dating is largely done on rock that has formed from solidified lava.

Lava properly called magma before it erupts fills large underground chambers called magma chambers.

Note that uranium and uranium give rise to two of the natural Some of the decays which are useful for dating, with their half-lives and decay constants.

Carbon 14 with a half life of 5, years can only be used to date fossils of approximately 50, years. Most fossils are thought to be much older than 50, years. Also most fossils no longer contain any Carbon. The fossilized remains have been mineralized where the original organic material has been replaced and turned into stones containing no carbon. Uranium has a half life of 4. Uranium can be used to date the age of the earth. This would be the estimated age of the earliest life or formation of fossils.

Note no fossils contain Uranium Uranium is only found in igneous or volcanic rocks. So no fossils can be dated directly using U

7.2: Absolute Dating

In this section we will explore the use of carbon dating to determine the age of fossil remains. Carbon is a key element in biologically important molecules. During the lifetime of an organism, carbon is brought into the cell from the environment in the form of either carbon dioxide or carbon-based food molecules such as glucose; then used to build biologically important molecules such as sugars, proteins, fats, and nucleic acids.

This method works in a way similar to the well-known Carbon dating in The use of a “radioactive chronometer” depends on the measurement of the The faster decay of Uranium would make it a much more precise cosmic clock.

Uranium series: The radioactive decay series that starts with U, U and Th and ends with stable isotopes of Pb, Pb and Pb, respectively. Secular equilibrium: A situation in which the quantity of a radioactive isotope remains constant because its production rate due to decay of a parent isotope is equal to its decay rate. Secular equilibrium can only occur in a radioactive decay chain if the half-life of the daughter radioisotope is much shorter than the half-life of the parent radioisotope, as typical of the uranium series decay chains.

Uranium series disequilibrium: Unequal radioactivity of the intermediate radioisotopes e. Once disequilibrium occurs, secular equilibrium status will be restored, or in other words, disequilibrium will be reduced to below analytical detection levels, after a period of time, e. Uranium series dating: A radiometric dating technique is commonly used to determine the age of uranium-rich, mainly carbonate, materials such as speleothem, coral, fossil bone materials, etc.

Unlike a U—Pb or Rb—Sr age that is determined by the accumulation of a stable daughter isotope, a U-series age is calculated based on the measurements of the level or degree to radioactive disequilibrium between the parental and daughter radioisotopes e.

Radioactive dating

Uranium U Half-life : million years. Uranium U Half-life : 4. Mode of decay: Alpha particles. It also can be used in nuclear weapons. Depleted uranium uranium containing mostly U can be used for radiation shielding or as projectiles in armor-piercing weapons. U and U occur naturally in nearly all rock, soil, and water.

We can then use radioactive age dating in order to date the ages of the surfaces (​when the rocks first formed, i.e. Uranium, Helium-4, Lead,

Geologist Ralph Harvey and historian Mott Greene explain the principles of radiometric dating and its application in determining the age of Earth. As the uranium in rocks decays, it emits subatomic particles and turns into lead at a constant rate. Measuring the uranium-to-lead ratios in the oldest rocks on Earth gave scientists an estimated age of the planet of 4.

Segment from A Science Odyssey: “Origins. View in: QuickTime RealPlayer. Radiometric Dating: Geologists have calculated the age of Earth at 4. But for humans whose life span rarely reaches more than years, how can we be so sure of that ancient date? It turns out the answers are in Earth’s rocks. Even the Greeks and Romans realized that layers of sediment in rock signified old age. But it wasn’t until the late s — when Scottish geologist James Hutton, who observed sediments building up on the landscape, set out to show that rocks were time clocks — that serious scientific interest in geological age began.

Before then, the Bible had provided the only estimate for the age of the world: about 6, years, with Genesis as the history book.

Decay scheme of K-Ar, U-Pb, Rb-Sr and Sm-Nd isotopic systems